Soal 10
$A=\Large{\frac{1}{\frac{1}{1980}+\frac{1}{1981}+...+\frac{1}{2001}}}$
Carilah nilai $\lfloor A \rfloor$
Solusi
Misalkan $X=\large{\frac{1}{1980}+\frac{1}{1981}+...+\frac{1}{2001}}$
Batas bawah
$\large{\frac{1}{1980}+\frac{1}{1981}+...+\frac{1}{2001}}\lt\large{\frac{1}{1980}+\frac{1}{1980}+...+\frac{1}{1980}}$
$X\lt\large{\frac{1}{1980}+\frac{1}{1980}+...+\frac{1}{1980}}$
$X\lt\large{\frac{22}{1980}}$
$X\lt\large{\frac{1}{90}}$
$A\gt90$
Batas atas
$\large{\frac{1}{1980}+\frac{1}{1981}+...+\frac{1}{2001}}\gt\large{\frac{1}{2001}+\frac{1}{2001}+...+\frac{1}{2001}}$
$X\gt\large{\frac{1}{2001}+\frac{1}{2001}+...+\frac{1}{2001}}$
$X\gt\large{\frac{22}{2001}}$
$A\lt\large{\frac{2001}{22}}$
$A\lt90\large{\frac{21}{22}}$
Dari batas atas dan batas bawah kita dapat $90 \lt A \lt 90\large{\frac{21}{22}}$
Cukup jelas $\lfloor A \rfloor = 90$