Soal 27
Carilah $x \in \mathbb{R}$ yang memenuhi $\Large{(\frac{x}{7})^x}=7^{7^2}$
Solusi
$\Large{(\frac{x}{7})^x}=7^{7^2}$
$\Large{(\frac{x}{7})^x}=7^{49}$
$\Large{\sqrt[7]{(\frac{x}{7})^x}}=\sqrt[7]{7^{49}}$
$\Large{(\frac{x}{7})^{\frac{x}{7}}}=7^{\frac{49}{7}}$
$\Large{(\frac{x}{7})^{\frac{x}{7}}}=7^7$
Cukup jelas $\large{\frac{x}{7}}=7$
Dengan demikian, $x=49$